Flowcytometrical analysis of radiation-induced γ-H2AX foci

Marcus Unverricht¹, Ulrich Giesen², Ralf Kriehuber¹

¹Radiation Biology Unit S-US, Department of Safety and Radiation Protection, Forschungszentrum Jülich, D- 52425 Juelich, Germany

PURPOSE: Phosphorylation of histone H2AX (γ -H2AX) occurs at sites flanking DNA double-strand breaks (DSBs) and can provide a measure of the number of DSBs within a cell (γ -H2AX-assay). We investigated whether the mean intensity and the mean number of radiation-induced γ -H2AX foci vary as a function of radiation quality and dose.

MATERIALS AND METHODS: Jurkat cells were irradiated with different doses of either low linear energy transfer (LET) 137 Cs γ -rays or high LET 241 Am α -particles. The γ -H2AX foci were detected using immunocytochemistry (primary antibody Anti-phospho-Histone H2AX(Ser139) mouse IgG, secondary antibody FITC goat anti-mouse IgG) and quantified by counting the number of γ -H2AX foci employing fluorescence microscopy and by measuring the mean signal intensity in single cell nuclei by flow cytometry.

RESULTS: The mean number of γ -H2AX foci is increased in a dose dependent manner for both radiation qualities and are broadly similar at identical absorbed radiation dose for both investigated radiation qualities. The mean γ -H2AX signal intensity of single nuclei is increased after alphairradiation when compared to γ -irradiation at the same absorbed radiation dose.

CONCLUSIONS: α -particle induced γ -H2AX foci show higher signal intensities compared to γ -ray-induced γ -H2AX foci. The mean intensity of radiation-induced γ -H2AX foci is dependent on radiation quality in Jurkat cells.

² Department 6.4, Ion Accelerators and Reference Radiation Fields, Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig, Germany